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Elliptical vortices in shallow water 
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A compact rotating shallow mass of fluid with a free boundary is released on a 
horizontal plane. Initially it is supposed that horizontal sections through the mass 
are elliptical, vertical sections are parabolic and the two velocities are linear functions 
of the horizontal coordinates. Thus four numbers suffice to describe the configuration 
of the fluid and another four the velocity field. The subsequent motion preserves this 
simple structure, and so the shallow-water equations reduce to ordinary differential 
equations in time for the eight parameters required to specify the initial condition. 

This eighth-order system can be reduced to quadratures using the well-known 
invariants of the shallow-water equations. There are five such integrals: volume, 
energy, enstrophy, angular momentum, and a fifth, which lacks a familiar name. The 
remaining three degrees of freedom can be related to the shape (i.e. eccentricity), 
horizontal size (i.e. radius of gyration) and or ientat ion of the mass. In  general, all of 
these are periodic functions of time but with different characteristic timescales. 
Simplest are size changes, which occur at the inertial frequencyf. Shape changes are 
superinertial, while orientation changes may be subinertial or superinertial. 

This solution is used to discuss the unsteady motion of a non-axisymmetric Gulf 
Stream ring. We argue that size and shape changes excite internal gravity waves in 
the underlying fluid, while orientation changes generate Rossby waves. While this 
wave radiation decreases the energy of the ring, and may alter the angular 
momentum, it cannot lead to a state of no motion because the volume and enstrophy 
are unaffected. 

1. Introduction 
This article discusses the motion of a compact rotating mass of fluid whose 

boundary is free. It is assumed that the aspect ratio and initial conditions are such 
that the shallow-water equations describe the evolution of the liquid. 

The geophysical motivation of this study is the dynamics of warm-core rings. 
These clockwise eddies of warm Sargasso Sea water are formed when a northward 
meander of the Gulf Stream becomes so extreme that it herniates, detaches from the 
stream and subsequently evolves as an isolated structure (Fofonoff 1981). Seen from 
above on a satellite photograph, they are roughly elliptical with a radius of about 
100 km (Brown et al. 1984; Evans et al. 1984; Cushman-Roisin, Heil & Nof (1985). 
Traditional hydrography shows that the warm water is bounded below at about 
500 m by a sharp thermocline. The reduced gravity at this interface is about 1 cm s-e 
(Csanady 1979). 

The model outlined in the first paragraph idealizes the structure of these rings by 
supposing that the boundary between the warm Sargasso Sea water and the 
underlying shelf water is a sharp interface that is free to move. The lower layer is 
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imagined to be infinitely deep, and consequently is motionless. Additionally the 
spatial gradient of the planetary vorticity field (the 8-effect) is ignored. Finally, 
dissipation and forcing are neglected. All of these assumptions are unreasonable, and 
so the primary geophysical motivation for this study is an investigation of the effects 
of strong departures from axisymmetry. These may be due to accidental events a t  
the birth of the ring or perhaps strong shearing events in the ambient fluid. Once 
present, they may be as dynamically important as the various processes that the 
present model ignores. Finally, the analysis here may serve as the basis of an 
expansion that includes these neglected processes as perturbations. For example, 
Flier1 (1984a, b) ,  Killworth (1983) and Nof (1981,1983) have all used the axisymmetric 
solution as the basis for an expansion that includes the 8-effect as a perturbation. 
An analogous calculation might use elliptical vortices as a starting point. 

To obtain simplification, i t  is necessary to suppose that the initial condition is 
special (see (3.1) below). Consequently, it is shown that the shallow-water equations 
can be reduced to an eighth-order set of ordinary differential equations in time. Then 
the various integrals of the motion (e.g. volume, energy, angular momentum and 
enstrophy) are used to further reduce and simplify this eighth-order system. 

The reduction of the shallow-water equations in (3.1) has a long history. Perhaps 
Goldsbrough (1930) was the first to observe that the shallow-water equations 
simplify if the velocities are linear functions and the depth is a quadratic function 
of the coordinates. But the nineteenth-century theory of self-gravitating masses (e.g. 
Lamb 1932 ; Chandrasekhar 1969) is based on analogous polynomial solutions. 
Goldsbrough’s observation is the basis of Ball’s (1965) and Thacker’s (1981) investi- 
gations of tidal oscillations in elliptical basins whose depth profile is parabolic. More 
recently, and in the context of warm-core rings, Cushman-Roisin et al. (1985) and 
the present author rediscovered these polynomial solutions. Cushman-Roisin et al. 
found an elegant particular solution : a uniformly rotating ellipse with constant shape 
(i.e. eccentricity) and size (i.e. area), which has been christened the ‘rodon’. 

The present study is directed at  understanding the qualitative properties of 
polynomial solutions. In particular, a systematic application of Ball’s (1963) general 
theorems reduces the evolution equations to quadratures. Thus it is shown that the 
uniformly rotating ellipse described by Cushman-Roisin et al. (1985) requires certain 
special relations amongst the constants of motion. In general, when these do not hold, 
an elliptical vortex does not rotate uniformly without change of shape and size. But 
the motion is still sufficiently simple as to permit complete qualitative understanding 
without resort to linearization about axisymmetry or extensive numerical 
calculation. 

One important issue that is ignored is the stability of these solutions. However, 
in one very special case the solution reduces to the geostrophically balanced, 
zero-potential-vorticity profile whose instability has been demonstrated by Griffiths, 
Killworth and Stern (1982). On the other hand, Killworth (1983) has shown that the 
axisymmetric special case is stable. Thus both cases are possible, and a thorough 
study of the ageostrophic stability of the intermediate elliptical vortices is of great 
interest. This stability calculation is surprisingly tractable (B. Cushman-Roisin and 
P. Ripa, personal communication) because, as in the theory of self-gravitating 
masses, the linearized perturbation equations also have polynomial solutions. 
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2. The shallow-water equations and some general results 
The shallow water equations are 

where h is the depth of the fluid. The velocities u and v are independent of z, and 
f is the Coriolis parameter. g is the gravitational acceleration, which in the geo- 
physical context may be a reduced gravity. It is assumed that the mass of fluid is 
finite and its boundary is free. If y = L(z,t) denotes this free, moving boundary 
then the boundary condition is 

h(z , l (x , t ) , t )  = 0, v = L,+uL,. (2.2) 

The remainder of this section summarizes some general results due to Ball (1963), 
which form the basis of the analysis in $3. 

The most obvious conserved quantity is the volume of fluid 

Q = JhdA 

Additional conserved quantities are the energy 

E = {+h(u2 + v2) +&h2} dA I 
and the angular momentum 

J h{ (ZV - yu) + +f(z2 + y2)} dA s 
The potential vorticity 

is conserved following particles : 

q =  (f+v,-uy)/h 

This in turn implies conservation of the generalized enstrophy 

Z =  hF(q)dA, I 
where F is an arbitrary function. 

Ball’s first theorem concerns the motion of the centre of mass 

(X, Y)Q = J ( a , y ) h U ,  

where Q is defined in (2.3). From (2.1), it follows that 

d2X dY d2Y dX 
dt2 dt ’ dt2 dt 

--f-=O -+f-= (2.10) 

and so the centre of gravity executes inertial oscillations. Further, Ball demonstrates 
that the additional motions relative to this centre are independent of the motion of 
the centre. 
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this centre. Thus, introducing the moment of inertia 
Ball's second theorem concerns the expansion and contraction of the fluid about 

I =  h { ( x - X ) 2 + ( y -  Y)'}>, s 
he shows it satisfies a remarkably simple equation : 

E+f21 = 2(2E+fJ) .  
dt2 

The above equation can be integrated once : 

{ ( 3 ' + f 2 P } - 4 ( 2 E + f J ) I  = - C ,  

(2.11) 

(2.12) 

(2.13) 

where C is another constant of the motion. To summarize: the constants of motion 
are &, E ,  J ,  2 and C.  These may not be all independent: for instance, it is shown in 
$3 that in an axisymmetric distension (defined below after (3 .3))  2 and C are 
functions of &, E and J .  In  fact, Ball established that in general 

/? = 97~(C-2P)/8gQ' (2.14) 

is greater than one. If /3 is precisely one then the motion must be axisymmetric (a 
pure distension in Ball's terminology). 

To the extent that the geometry of the mass is characterized by (X, Y) and I, one 
has a simple picture of how an arbitrary initial condition evolves. However, the 
preceding general results give no information on how departures from axisymmetry 
affect the evolution of the system. I have been unable to find any simple general 
results that supplement (2 .9)  and (2.11). Instead, a particular solution that illustrates 
these issues is presented. 

3. A special solution of the shallow-water equations 
Substitution of 

u = ax$by, v = cx+dy, h = k-$lx2-mxy-$y2 (3.11 

into (2.1) gives ordinary differential equations that determine the time evolution of 
the eight functions a, b ,  c ,  d ,  k ,  E ,  m,  n .  In  (3.1) the coordinates (2, y )  are relative to the 
moving centre of mass (see (2 .9)) .  Because the internal motions of the fluid are 
unaffected by the motion of the centre of mass, there is no loss of generality in this. 

The resulting ordinary differential equations are 

and 

6 = -ab-bd-fd+gm, 
a = -a2-bc-fc+gl, 

C = -dc-ac-fa+gm, 
d = -d2-bc-fb-gn 

k = - ( a + d )  k, 
1 = -3al-2cm-d1, 

m = -2(a+d)-bl-cn,  
n = -3dn-2bm-an. 

I 
(3.3) 

In the geophysical context g is the reduced gravity between the warm water mass 
and the resting infinitely deep lower layer (typically 1 cm s-~). f is the Coriolis 
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s-l. One point that is easy to overlook is that the 

The most recent investigation of (3.2) and (3 .3)  is that of Cushman-Roisin et al. 

parameter, which is about 
kinematic boundary condition (2.2) is identically satisfied by the above solution. 

(1985). They note that there are two steady solutions: 

(i) a one-dimensional parallel flow, i.e. (a/&) (u, w, h) = 0; 
(ii) an axisymmetric vortex, i.e. @/a$) (u, w, h) = 0. 

In both these cases four of the eight variables are identically zero. They then proceed 
to linearize (3 .2)  and (3 .3)  by assuming that departures from the axisymmetric 
solution with constant radius are small. Because observed Gulf Stream rings have 
modest eccentricities (perhaps 0.5-0.8), this is not unreasonable. From a geophysical 
perspective the most important result to emerge from this analysis is the existence 
of a low frequency (i.e. subinertial) mode. This consists of a slow clockwise rotation 
of the ellipse without change of form. Cushman-Roisin et al. speculate that this 
accounts for the observed rotation, at about 9” per day, of elliptical rings. 

Besides these linearized solutions they also discuss two exact nonlinear solutions 
of (3 .2)  and (3 .3) .  The first is axisymmetric and is Ball’s (1963) ‘distension’. This is 
simply a radial pulsation of a circular vortex at the inertial frequency. The second 
solution is more interesting and is essentially a nonlinear analogue of the subinertial 
mode described above : an elliptical vortex (with arbitrary eccentricity) rotates 
uniformly clockwise without change of form. The frequency of rotation goes to zero 
as the eccentricity approaches one. 

The present analysis aims to reduce (3 .2)  and (3.3) to quadratures. This clarifies 
the conditions under which the special nonlinear solutions discussed above emerge 
from arbitrary initial conditions. Additionally it is shown how the values of the 
various constants of motion determine observable quantities such as the rate of 
rotation (in general non-uniform) of the ring. 

To simplify (3.2) and (3.3), we exploit the general results in $2. Thus we know the 
time evolution of Q, E, J, 2, I and C. The first step is to express these six variables 
in terms of a , b , c , d , k , l , m , n .  This is simple in principle, but the algebra is quite 
involved. Because the results in $2 provide six variables, while (3 .1)  introduces eight, 
we need two additional variables, which are defined in (3.6) and (3.8). 

The simplest two relations are 

Q = Rk2/(h-m2)+,  ( 3 . 4 ~ )  

Z = ( c - b + f ) / k ,  (3.4b) 

and it should be noted that for the special solution (3.1) the infinite family of 
invariants in (2.7) reduces to constancy of 2 in (3.4b). To prove this, one simplifies 
the integral in (2.7) by first using the principal-axis system in which m in (3 .1)  is zero. 
Rescaling the coordinate axes so that the region of integration is circular shows that 
the arbitrary function F affects only the value of a dimensionless constant of 
proportionality. 

For reference the following geometric results should be noted: 

Q = ikA,  A4 = ( 4 1 t Q ) ~ / ( l n - m ~ ) ,  I = A3(n+1)/24n2, (3.5) 

where A is the area of the elliptical base and I is the moment of inertia defined in 
(2.10). For an axisymmetric vortex Q, A and I are not independent. Rather any one 
of these three can be calculated from the other two. Thus, introducing 

a = 37cI/AQ, (3.6) 
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one can show that a is one for an axisymmetric state, and is otherwise greater than 
one. a will be referred to as the ‘shape parameter’. In  fact, one can show that 

minor axis 
major axis 

r 3  = [a- (a2- l)& (3.7a) 

a = t[ri  + r-i]. (3.7b) 

(It should be noted that r is less than one, so (3.7b) implies a unique value of a for 
each value of r ) .  a is one of the two new variables that supplement those from 52. 
The other is the angle 

p = tan-’ (E) ; (3.8) 

& is the angle through which the coordinate system in (3.1) must be rotated so that 
m = 0, i.e. the angle at which the principal axes of the elliptical base are inclined to 
the initial coordinate system. 

In summary, a ,  b, c, d,  k, I ,  m, n are replaced by Q ,  E,  J ,  Z ,  I ,  C ,  a , p .  Some inter- 
mediate steps are given in Appendix A. The final result is 

(3.9a) 

V = -a2{(a2-1) (p-a)-z2(j-a)2},  (3.9b) 

(3.9c-e) 

so that a is governed by a simple nonlinear equation with a non-uniformly 
progressing time 7, defined in (3.10) below. The function V depends on the three 
non-dimensional constants p, z2 and j. As was mentioned after (2.13), p is always 
greater than or equal to one. If p is equal to one then the mass of fluid is 
axisymmetric. The non-dimensional angular momentum j has also been defined so 
that j = 1 for an axisymmetric state. 

The qualitative analysis of (3.9) in $4 hinges on the observation that a in (3.9) is 
restricted to the interval in which F‘ is negative. For instance, if z2 = 0 then this 
interval is (l ,p),  so that the shape changes periodically from circular (a  = 1) to the 
maximum eccentricity possible (a = p). In $4 the various inequalities that constrain 
the initial specification of a, p, j and 2 are discussed in detail. 

In (3.9) the time variable has also been changed: 

where I ,  is a reference moment of inertia: 

(3.10) 

(3.11) 

The evolution of the non-dimensional moment of inertia i is obtained by non- 
dimensionalizing and rearranging (2.12) and (2.13) : 

where 
(gy = f2{8ei-/3-(i-j2)2}, (3.12) 

e = E/f210 (3.13) 

is a non-dimensional energy. 
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Finally, p is calculated from 

dt ja- 1 - -f -+az- 
dr  d r  a2-1 
dP _ -  
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(3.14) 

Thus, to summarize, instead of the eight functions of time in (3.2) and (3.3), we have 
five constapts, Q, 2, J, E and C,  and three functions of time, i, a and p. The 
dimensionless moment of inertia i can be obtained quite easily from (3.12). The 
evolution of a is determined by (3.9), and, while it is not possible to solve this in 
closed form, it is easy to understand it qualitatively. Finally, the angle p is obtained 
from (3.14). The structure of this set is disappointingly simple. Although (3.2), (3.3) 
is an eighth-order system, the various integrals in $2 constrain the motion to be 
regular. 

In $4 various limiting and special cases of (3.9a), (3.12) and (3.14) are discussed. 

4. A qualitative analysis of the motion 
To systematically discuss the dependence of the dynamics on the various parameters 

introduced in $3, it is helpful to distinguish between variations in size of the ring and 
variations in shpe. Because the radius of gyration ( I / Q ) t  is proportional to it, 
variations in size are governed by (3.12). These necessarily occur at  the inertial 
frequency (this is more easily seen from (2.12)). 

Variations in shape are governed by (3.9). This is because vortices with the same 
value of a have the same ratio of major to minor axis, independent of the size of the 
eddy. It is shown below that shape changes are superinertial, i.e. the shape of the 
eddy changes more rapidly than its size. 

4.1. Solutions with permanent size 
These are solutions in which the various constants of the motion are related so that 
the only solution of (3.12) is 

i = i, = (/9+j222)!, (4.1) 

and this requires that 
e = + [ - j z + ( P + ~  '2 z 2 )*I 1 

When (4.2) is not satisfied the moment of inertia changes at the inertial frequency. 
It is still convenient to define i, as in (4.1), and, in fact, 

(i*)-l = s,'" i-' dt/27r, (4.3) 

i.e. i, is the harmonic mean of the changing moment of inertia. 
It might appear that (4.2) is a very special condition. However, if it  is not satisfied 

then the eddy should pulsate at the inertial frequency. While vigorous inertial 
motions do occur inside eddies, a gross pulsation at the inertial frequency is not a 
conspicuous feature of warm-core rings. Indeed, one is led to speculate that if the 
energy is greater than the right-hand side of (4.2) then the attendant inertial 
pulsations should excite inertial waves in the underlying cold fluid. This wave 
radiation would cease if it reduced the energy to the value in (4.2). An investigation 
of this radiation process is beyond the scope of the present paper, but this argument 
does suggest that solutions with permanent size are less special than they might first 
seem. 
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In any case, if (4.1) holds then 7 is simply proportional to t :  

7 = ft(/?+j"z")-i, 

and this will frequently be used to simplify subsequent results. 

(4.4) 

4.2. Solutions with permanent shape 
The shape changes are determined by (3.9). Because (da/d~), is positive, a is confined 
to the interval in which V is negative. For positive a (which is the only physically 
relevant case) this allowed interval is a subset of (1,  /?) and will be denoted by (a,, a2) : 

V ( a , ; z 2 , / ? , j ) = 0 ,  n =  1or2.  (4.5) 

The above defines a, and a, implicitly as functions of (z2,j,  /?). 
Now, in general, a is a periodic function of 7 that oscillates between the limits a, 

and a2. To see this, we note that a cannot 'stop' in the middle of the interval (a,, a,) 
because d a / d ~  =k 0 there. Moreover, a cannot stop at the endpoints a, and a,, because 
this would imply that d , a / d ~ ~  was discontinuous. (I am grateful to G. R. Flier1 for 
this observation.) There are also the spurious steady solutions a = a, or a2, discussed 
in Appendix A. Disregarding these, we conclude that the only way in which the shape 
of the vortex can be constant is that a, = a,. In this case V has a double root at a, 
and is positive everywhere else. Thus the solution is trapped at a,. These special 
solutions with constant shape are just the ' rodons ' discovered by Cushman-Roisin 
et al. (1985). Their identification in this context makes it likely that they are the only 
solutions of (3.2) and (3.3) that can be expressed in terms of elementary functions. 
The improbable alternative is that (3.9) can be integrated exactly. 

We now focus on the rodon solutions. The goal here is to locate the surface in 
(z2,j,/?)-space on which rodons reside. Thus in (3.9) these three parameters can be 
independently specified. However, i t  is clear that if l j (  becomes too large then 
eventually V has no positive zeros. Rodons are found at  the critical values of j where 
the two zeros coalesce and further increases in l j l  result in the disappearance of the 
positive zeros of V.  

The condition for a double zero is that V and aV/aa vanish a t  the same value of 
a. These relations can be rearranged to give z and j in terms of a and /3: 

( 3 ~ ~ - 2 a / ? - l ) ~  . a3+a-2/? 
4(a2- 1) (/?-a)' 

22 = 
= 3a2-2a/?- 1 (4.7) 

and these functions are contoured in figure 1.  These figures are useful if one elects 
to describe the rodon solution using a and /? as independent parameters. 

Numerical elimination of a between z2 andj,  with /3 fixed, gives the curves in figure 
2. These are useful if z2 and /? are used as the two parameters that describe the rodon. 
Thus, if z2 and /? are specified then there are two values of j at which solutions with 
permanent shape are found. 

The first curve is 

and on this curve 

/? > a > : [~+(p+3):] .  

The second curve is 

(4.9) 

(4.10) 
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FIGURE 1. (a) The enstrophy ze, defined in (3.9), as a function of a and /3 for a rodon. (b) The angular 
momentum j, defined in (3.9), as a function of a and ,9 for a rodon. The rodon is a two-parameter 
family of solution. In this figure the two independent parameters have been taken aa a (defined 
in (3.6) or (3.7)) and ,9 (defined in (3.9)). Rodons with large a are very eccentric. 

and here fv+($+3)4] > a  > 1. (4.11) 

Thus, on j-, a is in the lower portion of the interval (1, p), and so these shapes are 
more nearly circular than those on j,. 

One can also eliminate p between (4.7), and the result is 

222(aj- 1) ( j -a)  = ( a 2 -  1)2. (4.12) 

This shows that j cannot be in the interval (a-l, a), and in fact it  is straightforward 
to  show that j 2 a on the upper curve in figure 2 and j < a-l on the lower curve. 
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FIQURE 2. If z2 and /3 are used as the two parameters defining a rodon then j' can be found from 
the graph above. (a) B = 4 2 ,  ( b )  /3 = 2, ( c )  /3 = 4. For given zz and /3 there are two possible rodons. 
The upper banchj+(z2,b) are subinertial rodons, for which a is defined by (4.9). The lower branch 
j_(z',B) are superinertial rodons, for which a is limited by (4.1 1). An arbitrary initial condition (i.e. 
one that is not a rodon) must have j -  < j 6 j+. Thus the curves above are a boundary in parameter 
space that encloses allowed values of j .  

These curves are significant landmarks in parameter space. Consideration of the 
general problem (i.e. when the shape of the eddy changes) shows that, with /3 and 
z2 prescribed,j must lie betweenj, andj-. I f j  is outside this interval then V in (3.8) 
has no positive real zeros. This does not mean that the shallow-water equations have 
no solution with these values ofj, but only that the solution is not of the very special 
form in (3.1). 

It is interesting that rodons lie on the boundary of the allowed region of parameter 
space. It is tempting to speculate that there is a bifurcation to a different class of 
solutions when this boundary is crossed. 

From the preceding remarks, i t  is clear that the rodons are a two-parameter family 
of solutions. The choice of parameters is of course arbitrary and different choices are 
convenient in different contexts. The parameters used by Cushman-Roisin et aZ. 
(1985) are essentially CL and i,. This is a particularly useful choice for comparison 
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with observations. Various formulae that relatej, /3, etc., to a and i, are given in 
Appendix B. 

The rodons can change both their size (3.12) and their orientation (3.14). Rewriting 
(3.14) in terms o f t  and using (4.12) gives 

a (ja- 1)  _ -  d#u --f+fz---- 
dt i az-1 

( 4 . 1 3 ~ )  

(4.13b) 

Now on j-(zz,,B), j < a-l, and the last term in ( 4 . 1 3 ~ )  is negative if z is positive. Thus 
on j- the rotation rate is superinertial. On j+(zz, ,B) , j  > a, and the last term in (4.13b) 
is positive if z is positive. Thus, onj, the rotation rate is subinertial. If z is negative 
then these conclusions are reversed, but iil this case the vortex is inertially unstable. 

It is difficult to compare the rotation rates in (4.13) with the expressions given by 
Cushman-Roisin et al. (1985). This is because they use i ,  and a, rather than a and 
/3, as independent variables. For more details see Appendix B. 

4.3. Near-permanent-forrn solutions 

In $4.2 solutions of permanent shape (da/dr = 0) were discussed. These solutions 
require certain relations between the constants of motion, e.g. (4.7). If these relations 
are only approximately satisfied then we expect that a will exhibit small harmonic 
oscillations about some mean value : 

a=a,+E, €4 1, (4.14) 

In the above, a, is defined to be the solution of 

aV/& = 0, 

V(a,  ;p ,  j, z )  = O(sZ) 4 1 

and if E is to be small then one must have 

Thus, expanding V in a power series about a,, (3.9) becomes 

2 w v  (2) = - V ,  

where V and a2V/aa2 are evaluated at a,. Direct calculation gives 

(4.15) 

(4.16) 

and if E is to be small then the first term on the right-hand side must be small relative 
to the second. 

Thus (4.16) has harmonic solutions: 

E = eo C O S W ~ T ,  w," = a:{3a,-/3+z2}, E! = - V/w,". (4.17) 

It is difficult to estimate the timescale of these small shape changes from this, because 
(4.15) uses 7 as a time variable. However, assuming that the size is constant, one can 
use (4.4) to replace 7 by t in (4.15): 

f2a2,(3a, - /3+z2)  
/3 + j z z z  

E = Eo coswt, w2 = (4.18) 
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FIQURE 3. If a rodon is slightly perturbed then its shape changes periodically, e.g. (4.15). (w / f  )a 
is plotted here, where w is the frequency of these small oscillations. a and /I are the two parameters 
that define the rodon. This function is always greater than one, so that shape changes are 
superinertial. 

In figure 3, (o/f )2 is contoured as a function of a* and B. Because this function is 
always greater than one, shape changes are superinertial. 

As an example, consider the special case when the shape is close to axisymmetric. 
Thus a, /3 e n d j  are all close to 1 in (4.16), so 

(4.19) 

For very large values of 2 the shape changes occur at the inertial frequency. In  all 
other cases they are faster. 

Perturbations about an axisymmetric vortex are an important special case of 
(4.14), and it is worth while to return to (3.9) and analyse these in more detail. Thus, 
suppose 

(4.20) I a = l + y ,  y 4 1 ,  
/ 9= l+S ,  8 6 1 ,  
j = l + p ,  p 4 1 ,  

and substitute these into (3.8), neglecting cubic terms. The result is 

(4.21 a) 

(4.21 b)  

(4.21 c) 
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(In the notation of (4.13): a* = 1 +yo and e = y-yo.) Thus the orbits in the 
( y ,  dy/d.r)-plane are ellipses. From (4.21 c ) ,  it follows that p must satisfy the double 
inequality 

(4.22) 

because otherwise y: is negative. This is the near-axisymmetric version of the 
inequality that restricts j to the interval (j-,j+). Note how as /3 approaches one (&-to) 
the range of j becomes increasingly restricted. Numerical calculations in 5 4.4 suggest 
that the above are likely to be excellent approximations when r in (3.7) is less than 
2. This probably includes all the geophysically relevant cases. 

4.4. Some numerical examples 

To illustrate the preceding formalism, it may help to consider some specific examples, 
starting with the parameters which are most easily observed. 

Consider a ring whose major axis is 300 km and whose minor axis is 150 km; the 
central depth is taken as 500 m and the reduced gravity as 2 cm s - ~ .  

If we assume that the ring is a rodon then the above are sufficient to determine 
all the various non-dimensional parameters. With r = 2 we calculate a = 1.06066 
from (3.7). It is significant that a is close to one even for a ring with such pronounced 
eccentricity. From (B 3) and (B 4), RS = lo3 km2 and R2 = 1 1 . 2 5 ~  lo3 km2, so (B 2) 
gives 

(E) = ($)2 = 1.40625. 
8Ri 

Then, from (B 5), 
A- = 2.3949, 
A+ = 0.41754, 

/3- = 1.21034, 
/3+ = 1.08675. 

Now, given a and p, one can calculate z2 and j from (4.7) (or equivalently from (B 6)). 
The result is j- = 0.86629, zl = 0.49524, 

j, = 1.1543, 2: = 0.371924. 

We see that j+ > a and j- < a-l. Thus there are two rodons compatible with the 
initial conditions. The subinertial mode isj+,  and, from (4.13) or (B 7),  

dP 
- dt = -O.O772f, 

while, for the superinertial mode j-, 

_ -  " - - 1.3853f. 
dt 

In the above example we noted that a was very close to 1 even though r = 2. In 
fact, with r = 4, a = 1.25. These results suggest that the axisymmetric limit, 
summarized in (4.20)-(4.22), contains most of the geophysically interesting cases. Of 
course, p must also be close to one if these results are to be used. From (B 5) we see 
that, provided h is not very large, p will be close to one when a is close to one. Now 
if (R2/SR%) is of order one then this is the case for both A+ and h - .  In this case both 
the subinertial and superinertial mode are described by (4.20)-(4.22). However, if 
R2/8Ri becomes too large then A- becomes large and B- may be substantially 
different from one. To summarize, the subinertial mode j+ is always described by 
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(4.20)-(4.22). The superinertial mode is described by this system only if R2/8Ri is 
not too large (i.e. not so large as to make 8 in (B 5 )  much greater than one). The above 
numerical example is a case in point. Here 8, is 1.08 but 8- is 1.21, so st this rather 
modest value of R2/8Ri the expansion is starting to fail for the superinertial mode. 

5. Conclusions and some speculations 
Taking Goldsbrough’s (1930) reduction (3.1) of the shallow-water equations we 

have emphasized how a systematic application of Ball’s (1963) theorems reduces this 
eighth-order system to quadratures. Thus the eight time-dependent functions in (3.2) 
are replaced by five constants (Q, 2, E, J and C) and three time-dependent functions 
( I ,  a, y ) .  An important point is that the initial specification of (a, 6 ,  . . . , n) implies 
certain constraints on the constants of motion. Thus they must satisfy 8 > a > 1 
(Ball 1963) andj, 2j 2j- (see figure 3). Solutions of the shallow-water equations 
that fail to satisfy these inequalities may exist, but they do not have the simple form 
posited in (3.1). 

It was noted that the rodon solution of Cushman-Roisin et al. (1985) lies on the 
border of the allowed region in parameter space, i.e. j = j,(zz,,P) orj-(zz,,P). Further, 
if z > 0 then rodons on the j, branch rotate subinertially while those on thej- branch 
have superinertial rotation rates. 

After discussing solutions of permanent size or shape, we analysed the small 
oscillations that accompany a small perturbation of the constant shape solution. The 
most important point to emerge here is that shape changes are superinertial (figure 
3). This perturbation analysis does not prove that shape changes are generally 
superinertial, but it is likely that this is the case. 

Throughout this analysis i t  has been supposed that the fluid outside the elliptical 
eddy is unstratified and infinitely deep. Also the 8-effect has been ignored. These 
idealizations ensure that the exterior fluid remains motionless and the eddy preserves 
its initial energy and angular momentum. However, if these assumptions are relaxed, 
the eddy will lose energy and alter its angular momentum, because its motion will 
generate both internal gravity waves and Rossby waves. The timescales suggest that 
shape and size changes will generate internal waves, while the subinertial orientation 
changes will generate Rossby waves. 

However this wave radiation cannot completely spin-down the eddy. This is 
because the enstrophy 2 remains invariant ((2.6) is unchanged if one includes the 
8-effect and pressure forces associated with lower-layer motion in (2.1)). It seems 
likely that the internal-wave radiation will alter E, J and C so that the solution has 
constant shape and size. Then Rossby-wave radiation, on a longer timescale, will 
‘axisymmetrize’ the eddy. Throughout this process, Q and 2 are unchanged. In  the 
near-axisymmetric case the Rossby-wave radiation problem is difficult (see Flier1 
1984a, b), and so analytic progress in the strongly non-axisymmetric problem posed 
here is unlikely. Thus, without a numerical model, these remarks remain plausible 
speculation. 

Finally it is perhaps disappointing that the eighth-order system in (3.1) and (3.2) 
has such simple, regular behaviour. This is because the general arguments in $2  
provide so many constants of the motion. One wonders if the regularity found here 
survives if the problem is changed slightly. For instance, Ball (1965) discussed the 
tidal modes of an elliptic paraboloid, but his analysis stopped short of the complete 
qualitative study given here. He noted, however, that the angular momentum of the 
liquid is no longer constant when it  is confined in a basin whose cross-section is 
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elliptical, Also the moment of inertia can be no longer calculated at the outset, and 
there is no longer an integral analogous to C in (2.13). This raises the possibility that 
the tidal motion in such a basin may be dynamically richer than the system studied 
here. 

I thank M. G. Worster, B. Cushman-Roisin and G. R. Flier1 for several interesting 
conversations during the course of this work. This manuscript was typed by 
D. Frank. C. King performed the numerical calculations. I thank both of them for 
their expert assistance. Finally, this research was supported by Office of Naval 
Research grant N00014-79-(2-0472 and National Science Foundation grant 
OCE-842 1074. 

Appendix A. Intermediate steps leading (3.8) et seq. 

to first introduce an intermediate set. Thus, instead of a, b, c ,  d we use 
To change variables from a, b, c ,  d ,  k ,  1 ,  m, n to Q, E, J, 2, C, I, a,p, it is convenient 

2 = ( c - b + f ) / k ,  S = a+& s" = (b+c)2+(a-d)a ,  # = tan-'(-) (A 1) 

to describe the velocity field. 2 is constant. 6 is the rate of contraction or expansion 
of the area A. &b is the angle through which the coordinate system in (3.1) must be 
rotated so that b = - c ,  i.e. so that the velocity strain tensor is antisymmetric. 5 is 
a measure of departures from axisymmetry: a circular vortex has Y = 0. 

b+c 
a-d  

Next, instead of k ,  1 ,  m,  n, we use 

2m 
l - n  

Q = nk2(ln-m2)-t, 7 = l + n ,  E2 = (1-n)2+4m2, p = tan-'(-). (A 2) 

Q is the constant volume of the ring. b is the angle through which the coordinate 
system in (3 .1)  must be rotated so that m = 0. E is a measure of departures from 
axisymmetry: a circular vortex has 6 = 0. 7 is roughly an inverse measure of the 
diameter of the vortex. 

Because 2 and Q are constant, (3.2) and (3.3) are replaced by a sixth-order system: 

= -2SE-?gcos(p-4), (A 3 a )  

q = -287-6gcos(p-4), 
Y 2QZ 
t: A ,d =-f+~-sin(p-+)+-, 

p = -Sc+gE COS(p-$) ,  

6 = -f+g- sin (,u+), 
Y 

and the geometric properties of the fluid are 
A S  
A 

A4 = (87~Q)~(7~-6' ) - ' ,  I =  - 
24x27 * 

The time derivatives of these, which can of course be deduced from (A 3 ) ,  are: 

A = SA, 1 = &I-@ cos 01-4). (A 5 )  24n2 
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In terms of these new variables, the constants of motion from $ 2  are 

QzI A 3 K  
A 48n2 J = -+-sin @-$), 

E = g -+ 2Q2 [ d2 + (f -F72 + 511 i - 4  [ 6 cos (p- q5) + (f -T) 2QZ sin (,u -$)I, 
3A 8 96n2 

and once again these relations can be verified directly from (A 3). 
We now use (A 6) to simplify (A 3). It is convenient to introduce 

and then from (A 4) and (A 6c): 

8Q3a2 ( a2 - 1 )i 8Q3a3 
E =  9nP 9 r = w ’  

where /3 is defined in (3.8). Using (A 8), we can write (A 6a) as 

j = a+z- l [ (a2- i ) (B-a)~s in@-$) ,  

wherej and z are defined in (3.8). 
From (A 5 ) ,  we can find an expression for the rate of change of a: 

da 
- = -a[(a2- 1) (P-a)? cos @-$), 
d7 

where 7 is the new time variable defined in (3.9). Then, eliminating the trigonometric 
functions between (A 9) and (A 10) gives (3.9a, b). 

Using (A 8) to rewrite (A 3c) gives 

dt az(ja-1) 
- -f-+ _ -  dP 

d7 d7 a2-1 ’ 

and (A 3f) becomes 

d$ dt az(j-a) 
dr d7 2 ( 8 - a ) ‘  
-=-f-+ 

There is one subtle and confusing point associated with ( 3 . 9 ~ ~ ) .  This is that the 
elimination of the trigonometric functions between (A 9) and (A 10) has introduced 
spurious, unphysical solutions. These are 

(A 13) 

It is clear that a = a, is an exact, steady solution of ( 3 . 9 ~ ~ ) .  But it is not an exact 
solution of (A 10)-(A 12). To see this, note that if d a / d ~  = 0 in (A 10) then in general 
(unless a = 1 or /3) cos (p-$)  must be zero. But, by direct substitution in (A 11) and 
(A 12), one finds that (d/d7) (p-q5) 8 0 when a = a, unless a* is a double root of 
V .  Thus, although a = a* is a mathematical solution of (3.9a), it  is not a physical 
solution ! 

Analogous spurious solutions occur in elementary mechanics, and, just as they are 

aV(a*) * 0. a = a* and V(a,) = 0, - 
aa 

$ 
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disregarded there, they cause no concern here. Consider for instance the motion of 
a simple harmonic oscillator whose displacement is a. In suitable non-dimensional 
coordinates, Newton’s equation of motion is 

i + a  = 0,  (A 14) 

(A 15) 

or, forming an energy equation by multiplying by a, 

+a2 + $z2 = E.  

Now a = f (2E)f is an exact steady solution of (A 15) but clearly not of (A 14). The 
origin of this difficulty is that if d = 0 then (A 15) does not imply (A 14). Specifically, 
if (A 15) is differentiated then 

ci(i+a) = 0, 

and the spurious solution satisfies the above because ci = 0 rather than because of 
(A 14). 

The spurious solutions of ( 3 . 9 ~ )  are entirely analogous to the above, but locating 
the zero divisor is more difficult. 

Appendix B. a and i, as independent variables 
In  $ 4  it  was convenient to discuss constant-shape solutions using a and /3 as 

independent variables. Thus (4.7) expresses the angular momentum and the enstrophy 
of constant-shape solutions in terms of these. Likewise, (4.13) gives the rotation rate. 
These were the most convenient variables for theoretical analysis because they are 
directly related to constants of the motion. 

However, it may also be convenient to use a and i, as independent variables, for 
example, $4.4.  i, is defined in (4.1), and i t  can be verified from (3.12) that i ,  is the 
harmonic mean of i. 

First we use (4 .7) :  

ii = /3+ j2z2 

(a2 - 1)2 ]as. 
4(a2-  1) (p-a)  

Because the arithmetic mean is greater than the geometric mean, the above implies 
that 

(i*/a)2 2 1. 

This can be related to other results in the literature if we express i, and a in terms 
of dimensional variables. Using (3.5a), (3.6) and (3.10): 

where R is the geometric mean of the major and minor axes, 

A = xR2, (B 3)  

Ri = g k / f 2 .  (B 4 )  

and Rd is the deformation radius based on the central depth, 

Thus (B 2 )  generalizes Killworth’s (1983) restriction on the minimum radius of an 
isolated eddy by including departures from axisymmetry (define R by (B 3) ) .  
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Now use (B 1) to express /3 in terms of a and i, : 

/3= a+i(a2-l)A,  ) 

The perverse sign convention above is so that the formulae agree with (4.8) and 
(4.10), i.e. A,  is for rodons on thej, branch. Together with (4.7), the above expresses 
z and j in terms of a and i, : 

a--A (1  - 
1 -aA’ 2-A * 

j = -  22 = 

Finally, one can express the rotation rate in terms of a and i: 

!!? dt = ,+ f 2 i  iE { [ 1 - (tyJ * [ 1 +(;TI+}, 
where the + sign is for the subinertial modons (j,) and the - sign for the 
superinertial ( j - )  branch. Using (B 2), we see that if the size is constant (i = i,) then 
we recover the expression of Cushman-Roisin et al. (1985) for the rotation rate of the 
eddy. 
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